Electrolysis [S]

- 1. The electrolysis of a molten binary salt produces its constituent elements.
 - a. Define the term *electrolysis*: [2]
 - b. The electrolysis of molten iron(III) chloride produces elemental iron and chlorine.
 - i. Write a balanced equation, including state symbols, for the overall process: [3]
 - ii. Write the half-equation for the anode: [3]
 - iii. Write the half-equation for the cathode: [3]
- 2. Fill in the following table for the electrolysis of some molten salts: [28]

Salt	Products Formulae	Half-equations
NaCl		Anode:
		Cathode:
MgBr ₂		Anode:
		Cathode:
FeO		Anode:
		Cathode:
PbCl ₂		Anode:
		Cathode:

Electrolysis [S]

- 1. The electrolysis of a molten binary salt produces its constituent elements.
 - a. Define the term *electrolysis*: [2]

breaking down of a compound [1]

using electricity [1]

- b. The electrolysis of molten iron(III) chloride produces elemental iron and chlorine.
 - i. Write a balanced equation, including state symbols, for the overall process: [3]

 $2FeCl_3(I) \rightarrow 2Fe(I) + 3Cl_2(g)$ [formulae, balance, state symbols]

ii. Write the half-equation for the anode: [3]

 $2Cl \rightarrow Cl_2 + 2e^{-1}$ [formulae, balance, charges]

iii. Write the half-equation for the cathode: [3]

```
Fe^{3+} + 3e^{-} \rightarrow Fe [formulae, balance, charges]
```

2. Fill in the following table for the electrolysis of some molten salts: [28]

Salt	Products Formulae	Half-equations
NaCl	Na [1] and Cl ₂ [1]	Anode: 2Cl ⁻ → Cl ₂ + 2e ⁻ [formulae, balance, charges]
		Cathode: Na ⁺ + e ⁻ → Na [formulae, balance, charges]
MgBr ₂	Mg [1] and Br ₂ [1]	Anode: $2Br^{-} \rightarrow Br_2 + 2e^{-}$ [formulae, balance, charges]
		Cathode: Mg ²⁺ + 2e ⁻ → Mg [formulae, balance, charges]
FeO	Fe [1] and O ₂ [1]	Anode: $2O^{2-} \rightarrow O_2 + 4e^{-}$ [formulae, balance, charges]
		Cathode: Fe ²⁺ + 2e ⁻ → Fe [formulae, balance, charges]
PbCl ₂	Pb [1] and Cl ₂ [1]	Anode: 2Cl ⁻ → Cl ₂ + 2e ⁻ [formulae, balance, charges]
		Cathode: Pb ²⁺ + 2e ⁻ → Pb [formulae, balance, charges]